

	
		PDFTron pdfnet-node
		
			
			
			

	

	
			
				Namespaces
					PDFNet

			
	
				Classes
					PDFNet.Action
	PDFNet.ActionParameter
	PDFNet.AdvancedImagingModule
	PDFNet.Annot
	PDFNet.AnnotBorderStyle
	PDFNet.AttrObj
	PDFNet.Bookmark
	PDFNet.ByteRange
	PDFNet.CADModule
	PDFNet.CaretAnnot
	PDFNet.CharData
	PDFNet.CheckBoxWidget
	PDFNet.ChunkRenderer
	PDFNet.CircleAnnot
	PDFNet.ClassMap
	PDFNet.ColorPt
	PDFNet.ColorSpace
	PDFNet.ComboBoxWidget
	PDFNet.ContentElement
	PDFNet.ContentItem
	PDFNet.ContentNode
	PDFNet.ContentReplacer
	PDFNet.ConversionMonitor
	PDFNet.Convert
	PDFNet.Convert.AdvancedImagingConvertOptions
	PDFNet.Convert.CADConvertOptions
	PDFNet.Convert.ConversionOptions
	PDFNet.Convert.EPUBOutputOptions
	PDFNet.Convert.ExcelOutputOptions
	PDFNet.Convert.HTMLOutputOptions
	PDFNet.Convert.OfficeToPDFOptions
	PDFNet.Convert.OutputOptionsOCR
	PDFNet.Convert.PowerPointOutputOptions
	PDFNet.Convert.SVGConvertOptions
	PDFNet.Convert.SVGOutputOptions
	PDFNet.Convert.TiffOutputOptions
	PDFNet.Convert.WordOutputOptions
	PDFNet.Convert.XODOutputOptions
	PDFNet.Convert.XPSOutputCommonOptions
	PDFNet.Convert.XPSOutputOptions
	PDFNet.DataExtractionModule
	PDFNet.DataExtractionModule.DataExtractionOptions
	PDFNet.Date
	PDFNet.Destination
	PDFNet.Destroyable
	PDFNet.DictIterator
	PDFNet.DigestAlgorithm
	PDFNet.DigitalSignatureField
	PDFNet.DisallowedChange
	PDFNet.DocSnapshot
	PDFNet.DocumentConversion
	PDFNet.Element
	PDFNet.ElementBuilder
	PDFNet.ElementReader
	PDFNet.ElementWriter
	PDFNet.EmbeddedTimestampVerificationResult
	PDFNet.FDFDoc
	PDFNet.FDFDoc.XFDFExportOptions
	PDFNet.FDFField
	PDFNet.Field
	PDFNet.FileAttachmentAnnot
	PDFNet.FileSpec
	PDFNet.Filter
	PDFNet.FilterReader
	PDFNet.FilterWriter
	PDFNet.Flattener
	PDFNet.FlowDocument
	PDFNet.Font
	PDFNet.FreeTextAnnot
	PDFNet.Function
	PDFNet.GeometryCollection
	PDFNet.GState
	PDFNet.HighlightAnnot
	PDFNet.Highlights
	PDFNet.HTML2PDF
	PDFNet.HTML2PDF.Proxy
	PDFNet.HTML2PDF.TOCSettings
	PDFNet.HTML2PDF.WebPageSettings
	PDFNet.Image
	PDFNet.InkAnnot
	PDFNet.Iterator
	PDFNet.KeyStrokeActionResult
	PDFNet.KeyStrokeEventData
	PDFNet.LineAnnot
	PDFNet.LinkAnnot
	PDFNet.List
	PDFNet.ListBoxWidget
	PDFNet.ListItem
	PDFNet.MarkupAnnot
	PDFNet.Matrix2D
	PDFNet.MovieAnnot
	PDFNet.NameTree
	PDFNet.NumberTree
	PDFNet.Obj
	PDFNet.ObjectIdentifier
	PDFNet.ObjSet
	PDFNet.OCG
	PDFNet.OCGConfig
	PDFNet.OCGContext
	PDFNet.OCMD
	PDFNet.OCRModule
	PDFNet.OCRModule.OCROptions
	PDFNet.Optimizer
	PDFNet.Optimizer.ImageSettings
	PDFNet.Optimizer.MonoImageSettings
	PDFNet.Optimizer.OptimizerSettings
	PDFNet.Optimizer.TextSettings
	PDFNet.OwnedBitmap
	PDFNet.Page
	PDFNet.PageLabel
	PDFNet.PageSet
	PDFNet.Paragraph
	PDFNet.PatternColor
	PDFNet.PDF2HtmlReflowParagraphsModule
	PDFNet.PDF2WordModule
	PDFNet.PDFACompliance
	PDFNet.PDFACompliance.PDFAOptions
	PDFNet.PDFAOptions
	PDFNet.PDFDC
	PDFNet.PDFDCEX
	PDFNet.PDFDoc
	PDFNet.PDFDoc.DiffOptions
	PDFNet.PDFDoc.MergeXFDFOptions
	PDFNet.PDFDoc.RefreshOptions
	PDFNet.PDFDoc.SnapToOptions
	PDFNet.PDFDoc.TextDiffOptions
	PDFNet.PDFDoc.ViewerOptimizedOptions
	PDFNet.PDFDocInfo
	PDFNet.PDFDocViewPrefs
	PDFNet.PDFDraw
	PDFNet.PDFRasterizer
	PDFNet.PDFTronCustomSecurityHandler
	PDFNet.Point
	PDFNet.PolygonAnnot
	PDFNet.PolyLineAnnot
	PDFNet.PopupAnnot
	PDFNet.PrinterMode
	PDFNet.PrintToPdfModule
	PDFNet.PrintToPdfModule.PrintToPdfOptions
	PDFNet.PushButtonWidget
	PDFNet.QuadPoint
	PDFNet.RadioButtonGroup
	PDFNet.RadioButtonWidget
	PDFNet.Rect
	PDFNet.Redaction
	PDFNet.RedactionAnnot
	PDFNet.Redactor
	PDFNet.Reflow
	PDFNet.ResultSnapshot
	PDFNet.RoleMap
	PDFNet.RubberStampAnnot
	PDFNet.ScreenAnnot
	PDFNet.SDFDoc
	PDFNet.SecurityHandler
	PDFNet.SElement
	PDFNet.Separation
	PDFNet.Shading
	PDFNet.ShapedText
	PDFNet.SignatureHandler
	PDFNet.SignatureWidget
	PDFNet.SoundAnnot
	PDFNet.SquareAnnot
	PDFNet.SquigglyAnnot
	PDFNet.Stamper
	PDFNet.STree
	PDFNet.StrikeOutAnnot
	PDFNet.StructuredOutputModule
	PDFNet.Table
	PDFNet.TableCell
	PDFNet.TableRow
	PDFNet.TemplateDocument
	PDFNet.TextAnnot
	PDFNet.TextExtractor
	PDFNet.TextExtractorLine
	PDFNet.TextExtractorStyle
	PDFNet.TextExtractorWord
	PDFNet.TextMarkupAnnot
	PDFNet.TextRange
	PDFNet.TextRun
	PDFNet.TextSearch
	PDFNet.TextStyledElement
	PDFNet.TextWidget
	PDFNet.TimestampingConfiguration
	PDFNet.TimestampingResult
	PDFNet.TrustVerificationResult
	PDFNet.UnderlineAnnot
	PDFNet.UndoManager
	PDFNet.VerificationOptions
	PDFNet.VerificationResult
	PDFNet.ViewChangeCollection
	PDFNet.WatermarkAnnot
	PDFNet.WebFontDownloader
	PDFNet.WidgetAnnot
	PDFNet.X501AttributeTypeAndValue
	PDFNet.X501DistinguishedName
	PDFNet.X509Certificate
	PDFNet.X509Extension

			

 	
											
											
												
											

	

	
	
	
		
			

	Class: DigitalSignatureField

 PDFNet.

 DigitalSignatureField

	

new DigitalSignatureField([mp_field_dict_obj])

	

 A class representing a digital signature form field.

 Parameters:

	Name	Type	Argument	Description
	mp_field_dict_obj	

PDFNet.Obj

 	

 <optional>

 	

Properties:

	Name	Type	Description
	mp_field_dict_obj	

PDFNet.Obj

 	

	

	

	

	

	

	

	

	

	

	

	

	

 Members

	

<static> DocumentPermissions

	

 Type:

 	

number

Properties:

	Name	Type	Description
	e_no_changes_allowed	

number

 	
	e_formfilling_signing_allowed	

number

 	
	e_annotating_formfilling_signing_allowed	

number

 	
	e_unrestricted	

number

 	

	

	

	

	

	

	

	

	

	

	

	

	

	

<static> FieldPermissions

	

 Type:

 	

number

Properties:

	Name	Type	Description
	e_lock_all	

number

 	
	e_include	

number

 	
	e_exclude	

number

 	

	

	

	

	

	

	

	

	

	

	

	

	

	

<static> SubFilterType

	

 Type:

 	

number

Properties:

	Name	Type	Description
	e_adbe_x509_rsa_sha1	

number

 	
	e_adbe_pkcs7_detached	

number

 	
	e_adbe_pkcs7_sha1	

number

 	
	e_ETSI_CAdES_detached	

number

 	
	e_ETSI_RFC3161	

number

 	
	e_unknown	

number

 	
	e_absent	

number

 	

	

	

	

	

	

	

	

	

	

	

	

	

 Methods

	

<static> createFromField(in_field)

	

 Constructs a PDF::DigitalSignatureField from a PDF::Field.

 Parameters:

	Name	Type	Description
	in_field	

PDFNet.Field

 	- the PDF::Field to construct the DigitalSignatureField from.

 Returns:

 A promise that resolves to an object of type: "PDFNet.DigitalSignatureField"

	
 Type

	

Promise.<PDFNet.DigitalSignatureField>

	

<static> generateCMSSignature(in_signer_cert, in_chain_certs_list, in_digest_algorithm_oid, in_signature_algorithm_oid, in_signature_value_buf, in_signedattributes_buf)

	

 Low-level function belonging to custom-signing APIs. Using low-level inputs that permit incorporation of
remote key usage (cloud keystore, Hardware Security Module (HSM) device, etc.), generates bytes representing
a Cryptographic Message Syntax (CMS)-format signature encoded in DER. The resulting data can be passed to
SaveCustomSignature.

 Parameters:

	Name	Type	Description
	in_signer_cert	

PDFNet.X509Certificate

 	- the X509 public-key certificate of the signature's signer (mathematically associated with private key used)
	in_chain_certs_list	

Array.<PDFNet.X509Certificate>

 	- the intermediate and root certificates to include in the CMS to allow verifiers to establish the chain/path of trust
	in_digest_algorithm_oid	

PDFNet.ObjectIdentifier

 	- the OID of the digest algorithm used, for embedding in the CMS
	in_signature_algorithm_oid	

PDFNet.ObjectIdentifier

 	- the OID of the signature algorithm used, for embedding in the CMS
	in_signature_value_buf	

ArrayBuffer
|

Int8Array
|

Uint8Array
|

Uint8ClampedArray

 	- a buffer containing the signature value to embed in the CMS
	in_signedattributes_buf	

ArrayBuffer
|

Int8Array
|

Uint8Array
|

Uint8ClampedArray

 	- a buffer containing signedAttributes for embedding into the CMS (must exactly match those used when creating signature value)

 Returns:

 A promise that resolves to finished CMS data for embedding into the document using SaveCustomSignature

	
 Type

	

Promise.<Uint8Array>

	

<static> generateCMSSignedAttributes(in_digest_buf [, in_custom_signedattributes_buf])

	

 Low-level function belonging to custom-signing APIs. Creates the signedAttributes component of
Cryptographic Message Syntax (CMS). The result of this function can then be encrypted by a remote
private key (cloud service, Hardware Security Module (HSM) device, etc.), using some external API that returns
the bytes of a not-already-CMS-embedded signature value (e.g. RSA PKCS #1 v1.5 format). Following that,
CMS generation can be performed using GenerateCMSSignature, after which the resulting signature can be
inserted into a resulting signed version of the PDF document using the PDFDoc function SaveCustomSignature.

 Parameters:

	Name	Type	Argument	Description
	in_digest_buf	

ArrayBuffer
|

Int8Array
|

Uint8Array
|

Uint8ClampedArray

 	

 	- a buffer containing the digest of the document within ByteRanges of this DigitalSignatureField (see CalculateDigest)
	in_custom_signedattributes_buf	

ArrayBuffer
|

Int8Array
|

Uint8Array
|

Uint8ClampedArray

 	

 <optional>

 	- a buffer containing any optional custom BER-encoded signedAttributes to add,
including potentially the PAdES one (see GenerateESSSigningCertPAdESAttribute). (Do not place an ASN.1 constructed type around all of the attributes.)
Do not pass any of the normal attributes (content type or message digest) as custom attributes because otherwise they will be duplicated.

 Returns:

 A promise that resolves to the BER-encoded bytes of the future signedAttrs component of a CMS signature, with no surrounding constructed type

	
 Type

	

Promise.<Uint8Array>

	

<static> generateESSSigningCertPAdESAttribute(in_signer_cert, in_digest_algorithm_type)

	

 Low-level optional function belonging to custom-signing APIs allowing creation of PAdES signatures
with key elsewhere, allowing CMS to be generated automatically later.
Represents one the components of the functionality of SignDigest which are not key-related.
Creates the necessary attribute for a PAdES signature (ETSI.CAdES.detached subfilter type).
The result of this function can be passed as a contiguous part of the
custom attributes buffer parameter of GenerateCMSSignedAttributes.
At least one signing time, whether "M" (see SetSigDictTimeOfSigning) or
a secure embedded timestamp (see GenerateContentsWithEmbeddedTimestamp),
is also required to be added in order to create a PAdES signature.

The result will be either the BER-serialized bytes of an ESS_signing_cert or ESS_signing_cert_V2 CMS Attribute
(an ASN.1 SEQUENCE containing the correct OID and ESSCertID or ESSCertIDv2), as is appropriate,
depending on what digest algorithm type is provided (see RFC 5035).

 Parameters:

	Name	Type	Description
	in_signer_cert	

PDFNet.X509Certificate

 	- the X509 public-key certificate of the signature's signer (mathematically associated with private key to be used)
	in_digest_algorithm_type	

number

 	
PDFNet.DigestAlgorithm.Type = {
	e_SHA1 : 0
	e_SHA256 : 1
	e_SHA384 : 2
	e_SHA512 : 3
	e_RIPEMD160 : 4
	e_unknown_digest_algorithm : 5
}

-- the digest algorithm to be used

 Returns:

 A promise that resolves to the BER-serialized bytes of an ESS_signing_cert or ESS_signing_cert_V2 CMS attribute

	
 Type

	

Promise.<Uint8Array>

	

<static> signDigestBuffer(in_digest, in_pkcs12_buffer, in_keyfile_password, in_pades_mode, in_digest_algorithm_type)

	

 Returns a CMS detached signature incorporating a digest that is provided using the provided PKCS #12 key buffer (.pfx).
This function is part of the custom signing API, but cannot be used for workflows where the key is not in PFX format
or when the signature comes from a source that cannot generate CMS signatures (e.g. Hardware Security Modules (HSM) devices,
cloud signing services). In such cases, the low-level parts of the custom signing API should be used instead of this function
(e.g. GenerateESSSigningCertPAdESAttribute, GenerateCMSSignedAttributes, GenerateCMSSignature).
This function is a shortcut for situations in which use of more low-level custom signing functions is unnecessary.
Therefore, this function will generate necessary CMS components, such as signedAttrs, internally.
Note: This function does not change the DigitalSignatureField. Call SaveCustomSignature to write a signature to its PDFDoc.

 Parameters:

	Name	Type	Description
	in_digest	

ArrayBuffer
|

Int8Array
|

Uint8Array
|

Uint8ClampedArray

 	- the document digest value to use
	in_pkcs12_buffer	

ArrayBuffer
|

Int8Array
|

Uint8Array
|

Uint8ClampedArray

 	- a buffer containing the PKCS #12 key (as usually stored in .pfx files) to use for signing
	in_keyfile_password	

string

 	- the password to use to decrypt the PKCS #12 key file data in the buffer
	in_pades_mode	

boolean

 	- whether to create a PAdES-type signature (PDF Advanced Electronic Signatures standards)
	in_digest_algorithm_type	

number

 	
PDFNet.DigestAlgorithm.Type = {
	e_SHA1 : 0
	e_SHA256 : 1
	e_SHA384 : 2
	e_SHA512 : 3
	e_RIPEMD160 : 4
	e_unknown_digest_algorithm : 5
}

-- the identifier to use to write the digest algorithm

 Returns:

 A promise that resolves to the DER-serialized bytes of a CMS detached signature (CMS ContentInfo)

	
 Type

	

Promise.<Uint8Array>

	

<static> signDigestPath(in_digest, in_pkcs12_keyfile_path, in_keyfile_password, in_pades_mode, in_digest_algorithm_type)

	

 Returns a CMS detached signature incorporating a digest that is provided using the provided PKCS #12 key file (.pfx).
This function is part of the custom signing API, but cannot be used for workflows where the key is not in PFX format
or when the signature comes from a source that cannot generate CMS signatures (e.g. Hardware Security Modules (HSM) devices,
cloud signing services). In such cases, the low-level parts of the custom signing API should be used instead of this function
(e.g. GenerateESSSigningCertPAdESAttribute, GenerateCMSSignedAttributes, GenerateCMSSignature).
This function is a shortcut for situations in which use of more low-level custom signing functions is unnecessary.
Therefore, this function will generate necessary CMS components, such as signedAttrs, internally.
Note: This function does not change the DigitalSignatureField. Call SaveCustomSignature to write a signature to its PDFDoc.

 Parameters:

	Name	Type	Description
	in_digest	

ArrayBuffer
|

Int8Array
|

Uint8Array
|

Uint8ClampedArray

 	- the document digest value to use
	in_pkcs12_keyfile_path	

string

 	- the path to the PKCS #12 key file (usually has a .pfx extension) to use for signing
	in_keyfile_password	

string

 	- the password to use to decrypt the PKCS #12 key file
	in_pades_mode	

boolean

 	- whether to create a PAdES-type signature (PDF Advanced Electronic Signatures standards)
	in_digest_algorithm_type	

number

 	
PDFNet.DigestAlgorithm.Type = {
	e_SHA1 : 0
	e_SHA256 : 1
	e_SHA384 : 2
	e_SHA512 : 3
	e_RIPEMD160 : 4
	e_unknown_digest_algorithm : 5
}

-- the identifier to use to write the digest algorithm

 Returns:

 A promise that resolves to the DER-serialized bytes of a CMS detached signature (CMS ContentInfo)

	
 Type

	

Promise.<Uint8Array>

	

calculateDigest([in_digest_algorithm_type])

	

 Calculates the digest of the relevant bytes of the document for this signature field, in order to allow
the caller to perform custom signing/processing. Signature field must first be prepared using one of the
non-sign overloads (CreateSigDictForCustomSigning/Certification), and then the document must be saved; after that, this function can be called.
The ByteRanges that the most recent save has entered into the signature dictionary within this signature field
will be used to calculate the digest.

 Parameters:

	Name	Type	Argument	Description
	in_digest_algorithm_type	

number

 	

 <optional>

 	
PDFNet.DigestAlgorithm.Type = {
	e_SHA1 : 0
	e_SHA256 : 1
	e_SHA384 : 2
	e_SHA512 : 3
	e_RIPEMD160 : 4
	e_unknown_digest_algorithm : 5
}

-- the enumerated type of digest algorithm to use for the calculation. The default is SHA-256.

 Returns:

 A promise that resolves to an array of bytes containing the digest value

	
 Type

	

Promise.<Uint8Array>

	

certifyOnNextSave(in_pkcs12_keyfile_path, in_password)

	

 Must be called to prepare a signature for certification, which is done afterwards by calling Save. Throws if document already certified. Default document permission level is e_annotating_formfilling_signing_allowed. Throws if signature field already has a digital signature dictionary.

 Parameters:

	Name	Type	Description
	in_pkcs12_keyfile_path	

string

 	- The path to the PKCS #12 private keyfile to use to certify this digital signature.
	in_password	

string

 	- The password to use to parse the PKCS #12 keyfile.

 Returns:

	
 Type

	

Promise.<void>

	

certifyOnNextSaveFromBuffer(in_pkcs12_buffer, in_password)

	

 Must be called to prepare a signature for certification, which is done afterwards by calling Save. Throws if document already certified. Default document permission level is e_annotating_formfilling_signing_allowed. Throws if signature field already has a digital signature dictionary.

 Parameters:

	Name	Type	Description
	in_pkcs12_buffer	

ArrayBuffer
|

Int8Array
|

Uint8Array
|

Uint8ClampedArray

 	- A buffer of bytes containing the PKCS #12 private key certificate store to use to certify this digital signature.
	in_password	

string

 	- The password to use to parse the PKCS #12 buffer.

 Returns:

	
 Type

	

Promise.<void>

	

certifyOnNextSaveFromURL(url, in_password [, options])

	

 Must be called to prepare a signature for certification, which is done afterwards by calling Save. Throws if document already certified.
Default document permission level is e_annotating_formfilling_signing_allowed. Throws if signature field already has a digital signature dictionary.

 Parameters:

	Name	Type	Argument	Description
	url	

string

 	

 	The url to the PKCS #12 private keyfile to use to certify this digital signature.
	in_password	

string

 	

 	- The password to use to parse the PKCS #12 keyfile.
	options	

object

 	

 <optional>

 	Additional options
 Properties

	Name	Type	Description
	withCredentials	

boolean

 	Whether to set the withCredentials property on the XMLHttpRequest
	customHeaders	

object

 	An object containing custom HTTP headers to be used when downloading the document

 Returns:

	
 Type

	

Promise.<void>

	

certifyOnNextSaveWithCustomHandler(in_signature_handler_id)

	

 Must be called to prepare a signature for certification, which is done afterwards by calling Save. Throws if document already certified. Default document permission level is e_annotating_formfilling_signing_allowed. Throws if signature field already has a digital signature dictionary.

 Parameters:

	Name	Type	Description
	in_signature_handler_id	

number

 	- The unique id of the signature handler to use to certify this digital signature.

 Returns:

	
 Type

	

Promise.<void>

	

clearSignature()

	

 Clears cryptographic signature, if present. Otherwise, does nothing. Do not need to call HasCryptographicSignature before calling this. After clearing, other signatures should still pass validation if saving after clearing was done incrementally. Clears the appearance as well.

 Returns:

	
 Type

	

Promise.<void>

	

createSigDictForCustomCertification(in_filter_name, in_subfilter_type, in_contents_size_to_reserve)

	

 Prepares the field for certification without actually performing certification.
Useful for custom signing workflows. It is not necessary to call HasCryptographicSignature
before calling this function.

 Parameters:

	Name	Type	Description
	in_filter_name	

string

 	the Filter name to use, representing the name of the signature handler that will be used to sign and verify the signature (e.g. Adobe.PPKLite)
	in_subfilter_type	

number

 	
PDFNet.DigitalSignatureField.SubFilterType = {
	e_adbe_x509_rsa_sha1 : 0
	e_adbe_pkcs7_detached : 1
	e_adbe_pkcs7_sha1 : 2
	e_ETSI_CAdES_detached : 3
	e_ETSI_RFC3161 : 4
	e_unknown : 5
	e_absent : 6
}

the SubFilter name to use, representing an interoperable signature type identifier for third-party verification (e.g. adbe.pkcs7.detached, ETSI.CAdES.detached, etc.)
	in_contents_size_to_reserve	

number

 	The size of the empty Contents entry to create. For security reasons, set the contents size to a value greater than but as close as possible to the size you expect your final signature to be.

 Returns:

	
 Type

	

Promise.<void>

	

createSigDictForCustomSigning(in_filter_name, in_subfilter_type, in_contents_size_to_reserve)

	

 Prepares the field for approval signing without actually performing signing.
Useful for custom signing workflows. It is not necessary to call HasCryptographicSignature
before calling this function.

 Parameters:

	Name	Type	Description
	in_filter_name	

string

 	the Filter name to use, representing the name of the signature handler that will be used to sign and verify the signature (e.g. Adobe.PPKLite)
	in_subfilter_type	

number

 	
PDFNet.DigitalSignatureField.SubFilterType = {
	e_adbe_x509_rsa_sha1 : 0
	e_adbe_pkcs7_detached : 1
	e_adbe_pkcs7_sha1 : 2
	e_ETSI_CAdES_detached : 3
	e_ETSI_RFC3161 : 4
	e_unknown : 5
	e_absent : 6
}

the SubFilter name to use, representing an interoperable signature type identifier for third-party verification (e.g. adbe.pkcs7.detached, ETSI.CAdES.detached, etc.)
	in_contents_size_to_reserve	

number

 	The size of the empty Contents entry to create. For security reasons, set the contents size to a value greater than but as close as possible to the size you expect your final signature to be.

 Returns:

	
 Type

	

Promise.<void>

	

enableLTVOfflineVerification(in_verification_result)

	

 Given a successful verification result that required online information to verify trust
(trust verification must have been enabled and successful during the verification),
embeds data into the PDF document that allows the signature to be verified offline.
(This is accomplished using DSS and VRI dictionaries.) When this operation is
successfully completed, one of the two components of secure long term validation (LTV)
will be in place. The other necessary component of secure long term validation is
to make sure to timestamp the document appropriately while the signature
is still verifiable to maintain a chain of unexpired secure timestamps
attesting to the integrity of the document. The verifiability of the signature
should thereafter be maintainable in such a fashion despite any possible
certificate expiry, algorithm compromise, or key compromise that would
have otherwise rendered it invalid if it were to be verified using a time in
the future rather than a securely-signed timestamp-derived time nearer the time
of signing (at which which the signature was verifiable without extra data).
This function, if given a good verification result, is also capable of making timestamp
(DocTimeStamp ETSI.RFC3161) signatures LTV-enabled, which is necessary to do first when
you intend to add another timestamp around an already-timestamped document to extend
or enhance its verifiability (as described above), as per the PDF 2.0 and
ETSI TS 102 778-4 (PAdES Level 4) specifications.

 Parameters:

	Name	Type	Description
	in_verification_result	

PDFNet.VerificationResult

 	- a successful verification result containing a successful
TrustVerificationResult

 Returns:

 A promise that resolves to a boolean status that reflects whether offline verification information was added successfully

Note: It is necessary to save the document incrementally after this function completes successfully
in order to actually write the LTV data into the document.

	
 Type

	

Promise.<boolean>

	

generateContentsWithEmbeddedTimestamp(in_timestamping_config, in_timestamp_response_verification_options)

	

 Contacts a remote timestamp authority over network, sends CMS digest, receives and verifies
timestamp token, combines the timestamp token and the data of an existing CMS-type (adbe.pkcs7.detached or
ETSI.CAdES.detached subfilter) main document signature, and then returns that data to the user.
At least one signing time, whether "M" (see SetSigDictTimeOfSigning) or
a secure embedded timestamp, is required to be added in order to create a PAdES signature.

Note: This function does not insert the final CMS-type document signature into the document.
You must retrieve it from the result using GetData and then pass that to PDFDoc SaveCustomSignature.

 Parameters:

	Name	Type	Description
	in_timestamping_config	

PDFNet.TimestampingConfiguration

 	- Configuration options to store for timestamping.
These will include various items related to contacting a timestamping authority.
Incorrect configuration will result in an exception being thrown.
The usability of a combination of a TimestampingConfiguration and VerificationOptions
can be checked ahead of time to prevent exceptions by calling TestConfiguration on
TimestampingConfiguration and passing VerificationOptions.
	in_timestamp_response_verification_options	

PDFNet.VerificationOptions

 	- Options for the timestamp
response verification step (which is required by RFC 3161 to be done as part of
timestamping). These response verification options should include the root certificate
of the timestamp authority, so that the trust status of the timestamp signature
can be verified. The options that should be passed are the same ones that one expects
the timestamp to be verifiable with in the future (once it is embedded in the document),
except the response verification requires online revocation information whereas
the later verification may not (depending on whether LTV offline verification
information for the embedded timestamp gets embedded into the document by that
time). The timestamp response verification step makes sure that (a) the
timestamp response has a success status, which is the only time that this is
verified in the entire workflow, which prevents embedding an unsuccessful
response; (b) that it digests the main signature digest correctly and is otherwise generally
verifiable; and (c) that the nonce is correct (which is the only time that this
is verifiable in the entire workflow) to prevent replay attacks (if it was not
requested in the TimestampingConfiguration that the nonce mechanism should be
disabled).

 Returns:

 A promise that resolves to the result of the timestamp request, including the final document signature as DER-encoded CMS with a timestamp embedded

	
 Type

	

Promise.<PDFNet.TimestampingResult>

	

getByteRanges()

	

 Retrieves the ranges of byte indices within the document over which this signature is intended to apply/be verifiable.

 Returns:

 A promise that resolves to a container of byte range objects

Note: This function does not verify that the signature is valid over its byte
ranges. It merely returns them. This can be useful when a document consists of
multiple incremental revisions, the latter of which may or may not have been
signed, for telling which revisions were actually signed by which signature.
The outputs of this function can also be used to truncate the document at the
end of a signed byte range, in order that the signed document revision may
be retrieved from a document with later incremental revisions. Of course, to
be certain that the signature is valid, it must also then be verified using the
verification API. Also, the caller is responsible for making sure that the
byte ranges returned from this function actually make sense (i.e. fit inside
the document).

	
 Type

	

Promise.<Array.<PDFNet.ByteRange>>

	

getCert(in_index)

	

 Gets a certificate in the certificate chain (Cert entry) of the digital signature dictionary by index. Throws if Cert is not Array or String, throws if index is out of range and Cert is Array, throws if index is > 1 and Cert is string, otherwise retrieves the certificate. Only to be used for old-style adbe.x509.rsa_sha1 signatures; for other signatures, use CMS getter functions instead.

 Parameters:

	Name	Type	Description
	in_index	

number

 	- An integral index which must be greater than 0 and less than the cert count as retrieved using GetCertCount.

 Returns:

 A promise that resolves to a vector of bytes containing the certificate at the index. Returns empty vector if Cert is missing.

	
 Type

	

Promise.<Uint8Array>

	

getCertCount()

	

 Gets number of certificates in certificate chain (Cert entry of digital signature dictionary). Must call HasCryptographicSignature first and use it to check whether the signature is signed. Only to be used for old-style adbe.x509.rsa_sha1 signatures; for other signatures, use CMS getter functions instead.

 Returns:

 A promise that resolves to an integer value the number of certificates in the Cert entry of the digital signature dictionary.

	
 Type

	

Promise.<number>

	

getCertPathsFromCMS()

	

 Retrieves all constructible certificate paths from an adbe.pkcs7.detached digital signature. The signer
will always be returned if the signature is CMS-based and not corrupt. Must only be called on
signed adbe.pkcs7.detached signatures. The order of the certificates in each of the paths returned is as follows:
the signer will be first, and issuers come after it in order of the issuer of the previous certificate.
The default behaviour is to return a sub-path for each marginal issuer in a max-length path.

 Returns:

 A promise that resolves to a container of X509Certificate objects

Note: This function does not verify the paths. It merely extracts certificates and constructs paths.
This function only works when the build has support for verification-related APIs.

	
 Type

	

Promise.<Array.<Array.<PDFNet.X509Certificate>>>

	

getContactInfo()

	

 Should not be called when SubFilter is ETSI.RFC3161 (i.e. on a DocTimeStamp). Returns the contact information of the signer from the digital signature dictionary. Must call HasCryptographicSignature first and use it to check whether the signature is signed.

 Returns:

 A promise that resolves to a unicode string containing the contact information of the signer from within the digital signature dictionary. Empty if ContactInfo entry not present.

	
 Type

	

Promise.<string>

	

getDocumentPermissions()

	

 If HasCryptographicSignature, returns most restrictive permissions found in any reference entries in this digital signature. Returns Lock-resident (i.e. tentative) permissions otherwise. Throws if invalid permission value is found.

 Returns:

 A promise that resolves to an enumeration value representing the level of restrictions (potentially) placed on the document by this signature.

	
 Type

	

Promise.<number>

 Example

 Return value enum:
<pre>
PDFNet.DigitalSignatureField.DocumentPermissions = {
	e_no_changes_allowed : 1
	e_formfilling_signing_allowed : 2
	e_annotating_formfilling_signing_allowed : 3
	e_unrestricted : 4
}
</pre>

	

getLocation()

	

 Should not be called when SubFilter is ETSI.RFC3161 (i.e. on a DocTimeStamp). Returns the Location of the signature from the digital signature dictionary. Must call HasCryptographicSignature first and use it to check whether the signature is signed.

 Returns:

 A promise that resolves to a unicode string containing the signing location from within the digital signature dictionary. Empty if Location entry not present.

	
 Type

	

Promise.<string>

	

getLockedFields()

	

 Returns the fully-qualified names of all fields locked by this signature using the field permissions feature. Retrieves from the digital signature dictionary if the form field HasCryptographicSignature. Otherwise, retrieves from the Lock entry of the digital signature form field. Result is invalidated by any field additions or removals. Does not take document permissions restrictions into account.

 Returns:

 A promise that resolves to a vector of UStrings representing the fully-qualified names of all fields locked by this signature.

	
 Type

	

Promise.<Array.<string>>

	

getReason()

	

 Should not be called when SubFilter is ETSI.RFC3161 (i.e. on a DocTimeStamp). Returns the Reason for the signature from the digital signature dictionary. Must call HasCryptographicSignature first and use it to check whether the signature is signed.

 Returns:

 A promise that resolves to a unicode string containing the reason for the signature from within the digital signature dictionary. Empty if Reason entry not present.

	
 Type

	

Promise.<string>

	

getSDFObj()

	

 Retrieves the SDF Obj of the digital signature field.

 Returns:

 A promise that resolves to the underlying SDF/Cos object.

	
 Type

	

Promise.<PDFNet.Obj>

	

getSignatureName()

	

 Should not be called when SubFilter is ETSI.RFC3161 (i.e. on a DocTimeStamp). Returns the name of the signer of the signature from the digital signature dictionary. Must call HasCryptographicSignature first and use it to check whether the signature is signed.

 Returns:

 A promise that resolves to a unicode string containing the name of the signer from within the digital signature dictionary. Empty if Name entry not present.

	
 Type

	

Promise.<string>

	

getSignerCertFromCMS()

	

 Returns the signing certificate. Must only be called on signed adbe.pkcs7.detached or ETSI.CAdES.detached signatures.

 Returns:

 A promise that resolves to an X509Certificate object.

Note: This function does not verify the signature. It merely extracts the claimed signing certificate.
This function only works when the build has support for verification-related APIs.

	
 Type

	

Promise.<PDFNet.X509Certificate>

	

getSigningTime()

	

 Should not be called when SubFilter is ETSI.RFC3161 (i.e. on a DocTimeStamp).
Returns the "M" entry from the digital signature dictionary, which represents the
signing date/time. Must call HasCryptographicSignature first and use it to check whether the
signature is signed.

 Returns:

 A promise that resolves to a PDF::Date object holding the signing date/time from within the digital signature dictionary. Returns a default-constructed PDF::Date if no date is present.

	
 Type

	

Promise.<PDFNet.Date>

	

getSubFilter()

	

 Returns the SubFilter type of the digital signature. Specification says that one must check the SubFilter before using various getters. Must call HasCryptographicSignature first and use it to check whether the signature is signed.

 Returns:

 A promise that resolves to an enumeration describing what the SubFilter of the digital signature is from within the digital signature dictionary.

	
 Type

	

Promise.<number>

 Example

 Return value enum:
<pre>
PDFNet.DigitalSignatureField.SubFilterType = {
	e_adbe_x509_rsa_sha1 : 0
	e_adbe_pkcs7_detached : 1
	e_adbe_pkcs7_sha1 : 2
	e_ETSI_CAdES_detached : 3
	e_ETSI_RFC3161 : 4
	e_unknown : 5
	e_absent : 6
}
</pre>

	

hasCryptographicSignature()

	

 Returns whether the digital signature field has been cryptographically signed. Checks whether there is a digital signature dictionary in the field and whether it has a Contents entry. Must be called before using various digital signature dictionary-related functions. Does not check validity will return true even if a valid hash has not yet been generated (which will be the case after [Certify/Sign]OnNextSave[WithCustomHandler] has been called on the signature but even before Save is called on the document).

 Returns:

 A promise that resolves to a boolean value representing whether the digital signature field has a digital signature dictionary with a Contents entry.

	
 Type

	

Promise.<boolean>

	

hasVisibleAppearance()

	

 Returns whether the field has a visible appearance. Can be called without checking HasCryptographicSignature first, since it operates on the surrounding Field dictionary, not the "V" entry (i.e. digital signature dictionary). Performs the zero-width+height check, the Hidden bit check, and the NoView bit check as described by the PDF 2.0 specification, section 12.7.5.5 "Signature fields".

 Returns:

 A promise that resolves to a boolean representing whether or not the signature field has a visible signature.

	
 Type

	

Promise.<boolean>

	

isCertification()

	

 Returns whether or not this signature is a certification.

 Returns:

 A promise that resolves to a boolean value representing whether or not this signature is a certification.

	
 Type

	

Promise.<boolean>

	

isLockedByDigitalSignature()

	

 Returns whether this digital signature field is locked against modifications by any digital signatures. Can be called when this field is unsigned.

 Returns:

 A promise that resolves to a boolean representing whether this digital signature field is locked against modifications by any digital signatures in the document.

	
 Type

	

Promise.<boolean>

	

setContactInfo(in_contact_info)

	

 Should not be called when SubFilter is ETSI.RFC3161 (i.e. on a DocTimeStamp). Sets the ContactInfo entry in the digital signature dictionary. Must create a digital signature dictionary first using [Certify/Sign]OnNextSave[WithCustomHandler]. If this function is called on a digital signature field that has already been cryptographically signed with a valid hash, the hash will no longer be valid, so do not call Save (to sign/create the hash) until after you call this function, if you need to call this function in the first place. Essentially, call this function after [Certify/Sign]OnNextSave[WithCustomHandler] and before Save.

 Parameters:

	Name	Type	Description
	in_contact_info	

string

 	- A string containing the ContactInfo to be set.

 Returns:

	
 Type

	

Promise.<void>

	

setDocumentPermissions(in_perms)

	

 Sets the document locking permission level for this digital signature field. Call only on unsigned signatures, otherwise a valid hash will be invalidated.

 Parameters:

	Name	Type	Description
	in_perms	

number

 	
PDFNet.DigitalSignatureField.DocumentPermissions = {
	e_no_changes_allowed : 1
	e_formfilling_signing_allowed : 2
	e_annotating_formfilling_signing_allowed : 3
	e_unrestricted : 4
}

-- An enumerated value representing the document locking permission level to set.

 Returns:

	
 Type

	

Promise.<void>

	

setFieldPermissions(in_action [, in_field_names_list])

	

 Tentatively sets which fields are to be locked by this digital signature upon signing. It is not necessary to call HasCryptographicSignature before using this function. Throws if non-empty array of field names is passed along with FieldPermissions Action == e_lock_all.

 Parameters:

	Name	Type	Argument	Description
	in_action	

number

 	

 	
PDFNet.DigitalSignatureField.FieldPermissions = {
	e_lock_all : 0
	e_include : 1
	e_exclude : 2
}

-- An enumerated value representing which sort of field locking should be done. Options are All (lock all fields), Include (lock listed fields), and Exclude (lock all fields except listed fields).
	in_field_names_list	

Array.<string>

 	

 <optional>

 	- A list of field names; can be empty (and must be empty, if Action is set to All). Empty by default.

 Returns:

	
 Type

	

Promise.<void>

	

setLocation(in_location)

	

 Should not be called when SubFilter is ETSI.RFC3161 (i.e. on a DocTimeStamp). Sets the Location entry in the digital signature dictionary. Must create a digital signature dictionary first using [Certify/Sign]OnNextSave[WithCustomHandler]. If this function is called on a digital signature field that has already been cryptographically signed with a valid hash, the hash will no longer be valid, so do not call Save (to sign/create the hash) until after you call this function, if you need to call this function in the first place. Essentially, call this function after [Certify/Sign]OnNextSave[WithCustomHandler] and before Save.

 Parameters:

	Name	Type	Description
	in_location	

string

 	- A string containing the Location to be set.

 Returns:

	
 Type

	

Promise.<void>

	

setPreferredDigestAlgorithm(in_digest_algorithm_type [, in_make_mandatory])

	

 Sets the preferred digest algorithm to use when signing this field. This is done by setting DigestMethod
in the Seed Value dictionary. This function can be called before a signature field is even prepared for signing.

 Parameters:

	Name	Type	Argument	Description
	in_digest_algorithm_type	

number

 	

 	
PDFNet.DigestAlgorithm.Type = {
	e_SHA1 : 0
	e_SHA256 : 1
	e_SHA384 : 2
	e_SHA512 : 3
	e_RIPEMD160 : 4
	e_unknown_digest_algorithm : 5
}

-- the digest algorithm to use
	in_make_mandatory	

boolean

 	

 <optional>

 	- whether to tell signing software to give up if the preferred algorithm is unsupported. Default value for this parameter is true.

 Returns:

	
 Type

	

Promise.<void>

	

setReason(in_reason)

	

 Should not be called when SubFilter is ETSI.RFC3161 (i.e. on a DocTimeStamp). Sets the Reason entry in the digital signature dictionary. Must create a digital signature dictionary first using [Certify/Sign]OnNextSave[WithCustomHandler]. If this function is called on a digital signature field that has already been cryptographically signed with a valid hash, the hash will no longer be valid, so do not call Save (to sign/create the hash) until after you call this function, if you need to call this function in the first place. Essentially, call this function after [Certify/Sign]OnNextSave[WithCustomHandler] and before Save.

 Parameters:

	Name	Type	Description
	in_reason	

string

 	- A string containing the Reason to be set.

 Returns:

	
 Type

	

Promise.<void>

	

setSigDictTimeOfSigning(in_date)

	

 Adds the "M" key and value, representing the PDF-time-of-signing (not to be confused with
embedded timestamps, DocTimeStamps, or CMS signing time), to the digital signature dictionary.
The digital signature field must have been prepared for signing first. This function should
only be used if no secure embedded timestamping support is available from your signing provider.
Useful for custom signing workflows, where signing time is not set automatically by the Apryse SDK,
unlike in the usual standard handler signing workflow. A secure embedded timestamp can also be added
later and should override this "M" date entry when the signature is read by signature-verifying PDF processor applications.
At least one signing time, whether "M" or a secure embedded timestamp (see GenerateContentsWithEmbeddedTimestamp),
is required to be added in order to create a PAdES signature.

 Parameters:

	Name	Type	Description
	in_date	

PDFNet.Date

 	the PDF Date datetime value to set

 Returns:

	
 Type

	

Promise.<void>

	

signOnNextSave(in_pkcs12_keyfile_path, in_password)

	

 Must be called to prepare a signature for signing, which is done afterwards by calling Save. Cannot sign two signatures during one save (throws). Default document permission level is e_annotating_formfilling_signing_allowed. Throws if signature field already has a digital signature dictionary.

 Parameters:

	Name	Type	Description
	in_pkcs12_keyfile_path	

string

 	- The path to the PKCS #12 private keyfile to use to sign this digital signature.
	in_password	

string

 	- The password to use to parse the PKCS #12 keyfile.

 Returns:

	
 Type

	

Promise.<void>

	

signOnNextSaveFromBuffer(in_pkcs12_buffer, in_password)

	

 Must be called to prepare a signature for signing, which is done afterwards by calling Save. Cannot sign two signatures during one save (throws). Default document permission level is e_annotating_formfilling_signing_allowed. Throws if signature field already has a digital signature dictionary.

 Parameters:

	Name	Type	Description
	in_pkcs12_buffer	

ArrayBuffer
|

Int8Array
|

Uint8Array
|

Uint8ClampedArray

 	- A buffer of bytes containing the PKCS #12 private key certificate store to use to sign this digital signature.
	in_password	

string

 	- The password to use to parse the PKCS #12 buffer.

 Returns:

	
 Type

	

Promise.<void>

	

signOnNextSaveFromURL(url, in_password [, options])

	

 Must be called to prepare a signature for signing, which is done afterwards by calling Save. Cannot sign two signatures during one save (throws).
Default document permission level is e_annotating_formfilling_signing_allowed. Throws if signature field already has a digital signature dictionary.

 Parameters:

	Name	Type	Argument	Description
	url	

string

 	

 	The url to the PKCS #12 private keyfile to use to sign this digital signature.
	in_password	

string

 	

 	- The password to use to parse the PKCS #12 keyfile.
	options	

object

 	

 <optional>

 	Additional options
 Properties

	Name	Type	Description
	withCredentials	

boolean

 	Whether to set the withCredentials property on the XMLHttpRequest
	customHeaders	

object

 	An object containing custom HTTP headers to be used when downloading the document

 Returns:

	
 Type

	

Promise.<void>

	

signOnNextSaveWithCustomHandler(in_signature_handler_id)

	

 Must be called to prepare a signature for signing, which is done afterwards by calling Save. Cannot sign two signatures during one save (throws). Default document permission level is e_annotating_formfilling_signing_allowed. Throws if signature field already has a digital signature dictionary.

 Parameters:

	Name	Type	Description
	in_signature_handler_id	

number

 	- The unique id of the signature handler to use to sign this digital signature.

 Returns:

	
 Type

	

Promise.<void>

	

timestampOnNextSave(in_timestamping_config, in_timestamp_response_verification_options)

	

 Must be called to prepare a secure PDF-embedded timestamp signature (RFC 3161
DocTimeStamp) for signing, which is done afterwards by calling Save on the
document with an e_incremental flag. Throws if document is locked by other
signatures, if signature is already signed, or if another signature has already
been prepared for signing on the next save (because only one signing operation
can be done per incremental save). Default document permission level is
e_annotating_formfilling_signing_allowed.

 Parameters:

	Name	Type	Description
	in_timestamping_config	

PDFNet.TimestampingConfiguration

 	- Configuration options to store for timestamping.
These will include various items related to contacting a timestamping authority.
Incorrect configuration will result in document Save throwing an exception.
The usability of a combination of a TimestampingConfiguration and VerificationOptions
can be checked ahead of time to prevent exceptions by calling TestConfiguration on
TimestampingConfiguration and passing VerificationOptions.
	in_timestamp_response_verification_options	

PDFNet.VerificationOptions

 	- Options for the timestamp
response verification step (which is required by RFC 3161 to be done as part of
timestamping). These response verification options should include the root certificate
of the timestamp authority, so that the trust status of the timestamp signature
can be verified. The options that should be passed are the same ones that one expects
the timestamp to be verifiable with in the future (once it is embedded in the document),
except the response verification requires online revocation information whereas
the later verification may not (depending on whether LTV offline verification
information for the timestamp signature gets embedded into the document by that
time). The timestamp response verification step makes sure that (a) the
timestamp response has a success status, which is the only time that this is
verified in the entire workflow, which prevents embedding an unsuccessful
response; (b) that it digests the document correctly and is otherwise generally
verifiable; and (c) that the nonce is correct (which is the only time that this
is verifiable in the entire workflow) to prevent replay attacks (if it was not
requested in the TimestampingConfiguration that the nonce mechanism should be
disabled).

Note: A failure in timestamp response verification will result in document Save
throwing an exception. It is recommended to use TimestampingConfiguration.TestConfiguration
with the VerificationOptions ahead of time to avoid this.

 Returns:

	
 Type

	

Promise.<void>

	

useSubFilter(in_subfilter_type [, in_make_mandatory])

	

 Sets the requested SubFilter value (which identifies a signature type) as the only one to use during future signing, overwriting all such previous settings. It is not necessary to call HasCryptographicSignature before calling this function. For example, this function can be used to switch to PAdES signing mode.

 Parameters:

	Name	Type	Argument	Description
	in_subfilter_type	

number

 	

 	
PDFNet.DigitalSignatureField.SubFilterType = {
	e_adbe_x509_rsa_sha1 : 0
	e_adbe_pkcs7_detached : 1
	e_adbe_pkcs7_sha1 : 2
	e_ETSI_CAdES_detached : 3
	e_ETSI_RFC3161 : 4
	e_unknown : 5
	e_absent : 6
}

-- The SubFilter type to set.
	in_make_mandatory	

boolean

 	

 <optional>

 	- Whether to make usage of this SubFilter mandatory for future signing applications. Default value for this parameter is true.

 Returns:

	
 Type

	

Promise.<void>

	

verify(in_opts)

	

 Verifies this cryptographic digital signature in the manner specified by the VerificationOptions.

 Parameters:

	Name	Type	Description
	in_opts	

PDFNet.VerificationOptions

 	- The options specifying how to do the verification.

 Returns:

 A promise that resolves to a VerificationResult object containing various information about the verifiability of the cryptographic digital signature.

	
 Type

	

Promise.<PDFNet.VerificationResult>

		

	

	

	
		
			

		

	

 ×
 Search results

 Close

	Documentation generated by JSDoc 3.6.6
	
		on 2024-02-04T04:07:25-08:00
	
	using the DocStrap template.

